Autonomous differentiation in the mouse myogenic cell line, C2, involves a mutual positive control between insulin-like growth factor II and MyoD, operating as early as at the myoblast stage.
نویسندگان
چکیده
We have studied the contribution of the endogenous production of insulin-like growth factor II (IGFII) and of the muscle regulatory factor, MyoD, to the autonomy of differentiation in isolated skeletal myoblasts. Inhibition of MyoD and IGFII gene expression in myoblasts of the mouse myogenic cell line, C2, was achieved by transfection and selection of stably transfected cells (anti-MyoD and anti-IGFII cells) with vectors producing MyoD or IGFII antisense RNA. We observed that inhibiting either MyoD or IGFII has multiple and similar consequences. In addition to the inhibition of the target gene, expression of MyoD transcripts in anti-IGFII myoblasts and expression of IGFII in anti-MyoD myoblasts were also abolished, whereas accumulation of transcripts for the muscle regulatory factor, Myf5, was markedly increased in both cell types. However, despite this Myf5 up-regulation, both anti-IGFII and anti-MyoD myoblasts lost the ability to undergo autonomous differentiation (differentiation in the absence of added IGF), further indicating that Myf5 and MyoD are not strictly interchangeable. Additional evidence of a link between MyoD and IGFII was obtained: (1) forced expression of the MyoD cDNA stimulated IGFII gene expression, and (2) treatment of C2 myoblasts with fibroblast growth factor, not only diminished MyoD expression and compromised differentiation as previously shown by others, but also abolished IGFII expression. These experiments showing loss or gain of function argue in favor of a mutual positive control between IGFII and MyoD operating as early as the myoblast stage.
منابع مشابه
Effect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملThe distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimaeric limbs.
Differentiation of muscle and cartilage within developing vertebrate limbs occurs in a proximodistal progression. To investigate the cues responsible for regulating muscle pattern, mouse myoblasts were implanted into early chick wings prior to endogenous chick muscle differentiation. Fetal myogenic cells originating from transgenic mice carrying a lacZ reporter were readily detected in vivo aft...
متن کاملThe distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimæric limbs
Differentiation of muscle and cartilage within developing vertebrate limbs occurs in a proximodistal progression. To investigate the cues responsible for regulating muscle pattern, mouse myoblasts were implanted into early chick wings prior to endogenous chick muscle differentiation. Fetal myogenic cells originating from transgenic mice carrying a lacZ reporter were readily detected in vivo aft...
متن کاملMuscle cell survival mediated by the transcriptional coactivators p300 and PCAF displays different requirements for acetyltransferase activity.
Normal skeletal muscle development requires the proper orchestration of genetic programs by myogenic regulatory factors (MRFs). The actions of the MRF protein MyoD are enhanced by the transcriptional coactivators p300 and the p300/CBP-associated factor (PCAF). We previously described C2 skeletal myoblasts lacking expression of insulin-like growth factor-II (IGF-II) that underwent progressive ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 109 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1996